

DESCRIPTION

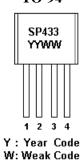
The SP433 is high-voltage four-terminal adjustable voltage references, with over current protection feature. The SP433 is a one chip solution to a 2.5V precision voltage reference and constant current output in the application of secondary feedback control of power supply, DC/DC converter, adaptor and charger. SP433 is idea for low cost switching power supply application.

APPLICATIONS

- Battery Charger
- Battery Power Equipment
- Linear Regulators
- Switch Power Supply
- Cellular Phone
- Digital Cameras
- Computer Disk Drivers
- Instrumentation

FEATURES

- Voltage Reference Accuracy of 0.5% & 1.0%
- Sink Current Capability from 1mA to 100mA
- Adjustable Output Voltage from VREF to 18V
- Low Output Noise
- Typical Output Dynamic Impedance Less Than 200mΩ
- Available in SOT-23-5L and TO-94 package
- Over Current Protection

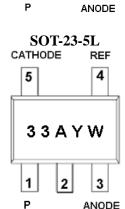

PIN CONFIGURATION

TO-94

PART MARKING

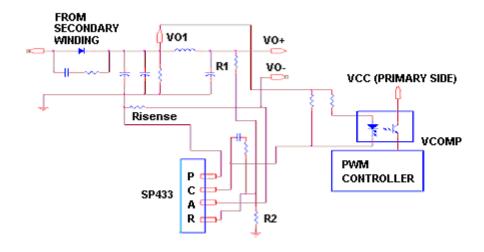
TO-94

SOT-23-5L


REF

3

CATHODE


5

1

2

TYPICAL APPLCATION CIRCUIT

PIN DESCRIPTION (TO-94)

Pin	Symbol	Description
1	R	REF
2	A	ANODE
3	С	CATHODE
4	P	CURRENT ENABLE

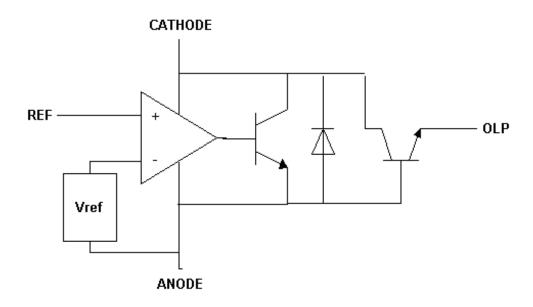
PIN DESCRIPTION (SOT-23-5L)

THY DEBORM TION (BOT 20 CE)				
Pin	Symbol	Description		
1	P	CURRENT ENABLE		
2	NC	NC		
3	ANODE	ANODE		
4	REF	REF		
5	CATHODE	CATHODE		

ORDERING INFORMATION

Part Number	Voltage Tolerance	Package	Part Marking
SP433AS25RGB	0.5%	SOT-23-5L	33A
SP433BS25RGB	1.0%	SOT-23-5L	33B
SP433AT94AGB	0.5%	TO-94	SP433
SP433BT94AGB	1.0%	TO-94	SP433

% Week Code : A ~ Z (1 ~ 26); a ~ z (27 ~ 52)


※ SP433AS25RGB: Tape Reel; Pb − Free; Halogen - Free

※ SP433BS25RGB : Tape Reel ; Pb − Free ; Halogen -Free

SP433AT94AGB: Tape Ammo; Pb-Free; Halogen -Free

SP433BT94AGB : Tape Ammo ; Pb-Free ; Halogen -Free

BLOCK DIAGRAM

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise specified)

Parameter	Symbol	Value	Unit
Cathode Voltage	Vz	18	V
Continuous Cathode Current Range	Iz	150	mA
Reference Current Range	Iref	10	mA
Operating Junction Temperature Range	Тл	-40 ~ +150	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	Tstg	-65 ~ +150	$^{\circ}$ C
Lead Temperature Range (Soldering 10Sec)	Tsol	260	$^{\circ}\! \mathbb{C}$
Thermal Resistance	ӨЈА	140	°C/W

The IC has a protection circuit against static electricity. Do not apply high static electricity or high voltage that exceeds the performance of the protection circuit to the IC.

ELECTRICAL CHARACTERISTICS

(Ta=25°C, Unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Reference Input Voltage (I _K =10mA, V _Z =V _{REF})	VREF	SP433A SP433B	2.487 2.475	2.5 2.5	2.513 2.525	V
V _{REF} Temp Deviation	V _{DEV}	T_{A} =-40°C ~+80°C V_{Z} = V_{REF} I_{Z} =10mA		10	25	mV
Ratio Of Change In REF To Change In Cathode Voltage	$\begin{array}{c} \triangle \ V_{REF} / \\ \triangle \ V_{Z} \end{array}$	Iz=10mA, $\triangle V_Z = 18V \sim V_{REF}$		-1.4	-2.7	mV/V
Reference Input Current	Iref	Iz=10mA $R1=10KΩ$ $R2=∞$			1	uA
IREF Temp Deviation	IREF(DEV)	T_A =-40°C ~+80°C R1=10K Ω , R2= ∞ Iz=10mA			2.5	uA
Off-State Cathode Current	Iz(off)	V _{REF} =0V , V _Z =18V			0.1	uA
Dynamic Output Impedance	Rz	f<1kHz , Vz=V _{REF} Iz=1mA~100mA		1.0	1.5	Ω
Minimum Operating Current	Iz(MIN)	Vz=Vref			1.0	mA
Current Amplification	Iamp	V _C =1V, I _A =50uA	10			mA
Saturation Voltage	Vsat	Ic=150mA, Ia=10mA			0.8	V
Maximum Protection Current	IР				100	mA

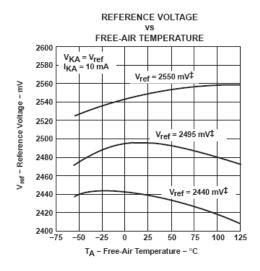
APPLICATION NOTE

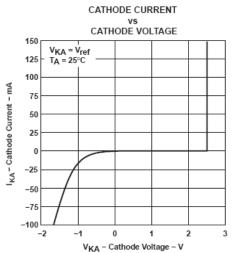
In the above application, SP433 is used to provide an accurate control of voltage and current. The voltage loop is controlled through an internal error amplifier, the resistor bridge R_1 , R_2 and the photo-coupler. The relation between V_{out} , R_1 , R_2 and V_{ref} is shown in:

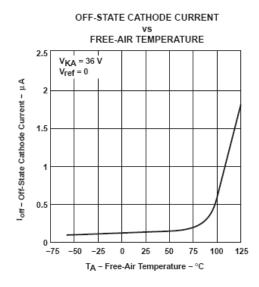
$$V_{out} = V_{ref x} (1+R_1/R_2)$$

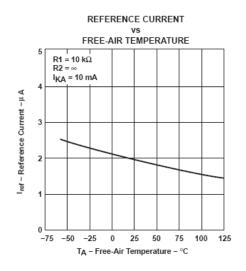
The current loop is controlled through an internal transistor, the sense resistor and the photo-coupler. The control equation is:

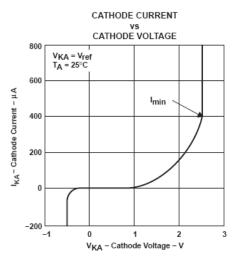
Risense
$$X$$
 I-limit = 0.7V (typical)

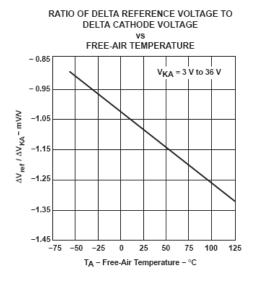

Where I-limit is the desired current limit. The selection of Risense should consider the power loss through Risense. It is calculated as:

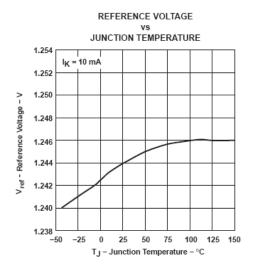

$$P$$
-limit = $0.7 X I$ -limit

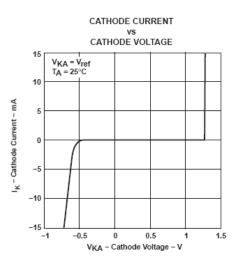

Whether AC input is at High Line or Low Line, SP433 can provide the same current protection. It has the fuse function at the output.

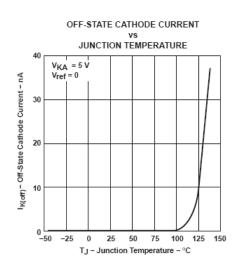


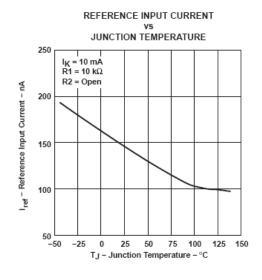

PERFORMANCE CHARACTERISTICS












PERFORMANCE CHARACTERISTICS

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

© http://www.syncpower.com