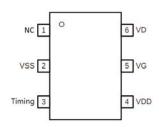


DESCRIPTION

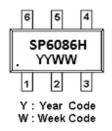
The SP6086H is a low-drop diode emulator IC. By combining with an external switch, it replaces Schottky diodes in high-efficiency flyback converters.

The SP6086H generates its own supply voltage and does not need auxiliary winding for either high-side or low-side applications. Programmable ringing detection circuitry prevents the SP6086H from false turning on at $V_{\rm DS}$ oscillations during discontinuous conduction mode (DCM) and quasi-resonant (QR) operation. It has a timing pin to allow SP6086H to turn on at a selected load.

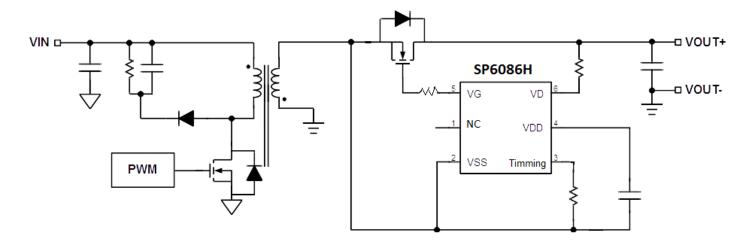
SP6086H is available in space saving SOT-23-6L package.


APPLICATIONS

- Industrial Power Systems
- Distributed Power Systems
- Battery Powered Systems
- Flyback Converters
- USB PD Quick Chargers


FEATURES

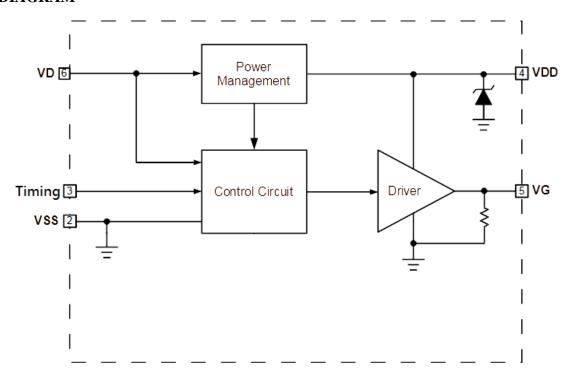
- Does not need auxiliary winding for either high-side or low-side applications
- Fast turn-on and turn-off delay
- Ringing detection prevents false turn-on during DCM and QR operations
- Less than 100mW standby power
- Up to 300KHz
- <400uA quiescent current at light load mode
- Supports CCM, DCM and QR operation
- Support both high-side and low-side rectification
- Available in space saving SOT-23-6L package


PIN CONFIGURATION (SOT-23-6L)

PART MARKING

TYPICAL APPLICATION CIRCUIT

PIN DESCRIPTION


Pin No.	Pin Name	Description	
1	NC		
2	VSS	Ground, also used as reference for VD	
3	Timing	Discontinuous current filter timing adjustment by a resistor	
4	VDD	Linear regulator output. Supply voltage for internal circuits	
5	VG	Gate driver output	
6	VD	External FET drain voltage sensing and input of linear regulator	

ORDERING INFORMATION

Part Number	Package	Part Marking
SP6086HS26RGB	SOT-23-6L	SP6086H

* SP6086HS26RGB : Tape Reel ; Pb – Free ; Halogen – Free

BLOCK DIAGRAM

The following ratings designate persistent limits beyond which damage to the device may occur.

Symbol	Parameter	Value	Unit	
Vdd	VDD, VG and SL pins voltages to VSS	-0.3 ~ 8.0	V	
VD	VD pin voltage to VSS	- 0.7 ∼ 200	V	
P _D	Power Dissipation @ TA=85°C (*)	0.3	W	
TJ	Junction temperature	- 40 ∼ 150	°C	
T _{STG}	Storage temperature	- 40 ∼ 150	°C	
TLEAD	Lead soldering temperature for 5 sec	260	°C	

THERMAL RESISTANCE

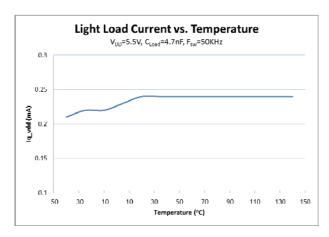
Symbol	Parameter	Value	Unit		
Rөja	Thermal Resistance Junction –to Ambient (*1)	220	°C/W		
Rөjc	Thermal Resistance Junction –to Case (*2)	110	°C/W		

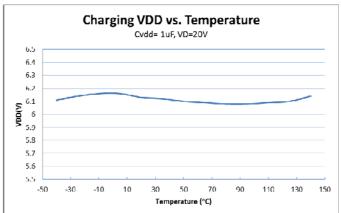
^(*1) θJA is measured in natural convection (still air) at TA = 25°C with the component mounted on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

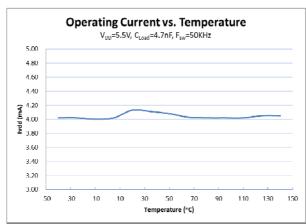
^(*2) The power dissipation and thermal resistance are evaluated under copper board mounted with free air conditions

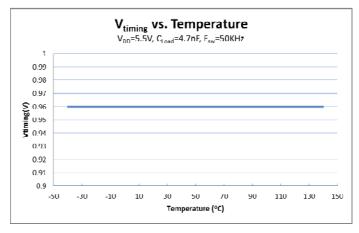
ELECTRICAL CHARACTERISTICS

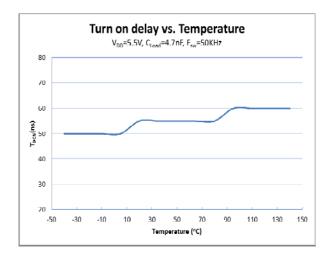
(T_A=25°C, V_{DD}=5.5V, unless otherwise specified)

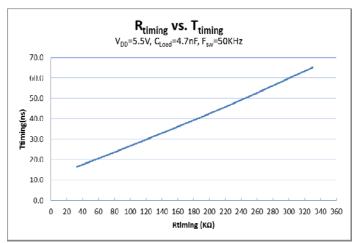

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply S	ection					
UVLO	VDD UVLO rising		4.5	4.9	5.3	V
	VDD UVLO Hysteresis			1.2		V
	VDD clamp voltage	$I_{DD} = 10 \text{mA}$		7.5		V
т	VDD charging comment	$V_D = 20V, V_{DD} = 0V$		20		mA
I_{VD}	VDD charging current	$V_D = 20V$, $R_{VDD} = 1K\Omega$		7		mA
	VDD regulation voltage	$V_D = 20V$	6	6.3	6.5	V
I_{CC}	Operating current	C_{LOAD} =4.7nF, F_{SW} =50kHz		5		mA
	Shutdown current	$V_{DD}=UVLO-0.5V$			140	uA
I _{STANDBY}	Light-load mode current	$R_{timing} = 100 k\Omega$		250	400	uA
Control (Circuitry Section					
V_{LL-DS}	VSS-VD turn-on threshold			230		mV
V_{fwd}	VSS-VD forward voltage			25		mV
	VSS-VD turn-off threshold			3		mV
T_{Don}	Turn-on delay	C_{LOAD} =5nF, V_{GS} =2V			75	ns
		$C_{LOAD}=10nF, V_{GS}=2V$			100	ns
	Turn-off propagation delay(*)	$V_D = V_{SS}$		15		ns
T_{Doff}	Turn-off total delay	$V_D=V_{SS}, C_{LOAD}=5nF, R_{GATE}=0\Omega, V_{GS}=2V$		30		ns
		$\begin{array}{c} V_{GS}\!\!=\!\!2V \\ V_{D}\!\!=\!\!V_{SS}, C_{LOAD}\!\!=\!\!10\text{nF}, R_{GATE}\!\!=\!\!0\Omega, \\ V_{GS}\!\!=\!\!2V \end{array}$		40		ns
T_{Bon}	Turn-on blanking time			0.7		us
V_{Boff}	Turn-off blanking V _{DS} threshold		1.5		2.5	V
T_{timing}	Falling slope detection timer	R_{timing} =100k Ω , V_D transition from 2V to -0.1V		30		ns
Vtiming	Reference voltage	Rtiming= 100 k Ω ,	0.95	0.985	1.01	V
T _{LL1}	Light-load-enter pulse width	-		0.8		us
T _{LL1-H}	Light-load-enter pulse width hysteresis			0.3		us
T_{LL2}	Light-load-enter pause width			1		ms
T_{LL-DEL}	Light-load-enter delay			6		cycle
	ver Section		1		I	1 0,010
V _{G-L}	Gate output low voltage	I _{LOAD} =1mA			0.1	V
V_{G-H}	Gate output high voltage	-LUAD	6		V.1	V
, O-11	Peak source current(*)			0.5		A
	Peak sink current(*)			3		A
	Pull down impedance			1	1	Ω


Notes:


(*)Guaranteed by design and characterization.




TYPICAL CHARACTERISTICS



Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation
©2023 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115,
R.O.C Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

2023/10/30 Ver 1.0