

DESCRIPTION

The SP6851 is a low cost, low startup current, current mode PWM controller with green-mode power-saving operation. Built-in 650V MOSFET provides simple design for adapter. The integrated functions include the leading-edge blanking of the current sensing, internal slope compensation. It would provide the users a superior AC/DC power application of higher efficiency, low external component counts, and lower cost solution for applications.

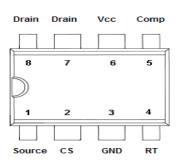
The SP6851 features more protections or functions for the following characteristics :

**Add OLP (Over Load Protection) function to provide better protection performance for fault conditions like short circuit or over load.

*Modify the OVP (Over Voltage Protection) mechanism from the cycle-by-cycle mode to the hiccup mode.

SP6851 is available in DIP-8P package.

APPLICATIONS


- AC/DC Switching Power Adaptor
- Battery Charger
- PC 5V Standby Power.
- Open-Frame Switching Power Supply

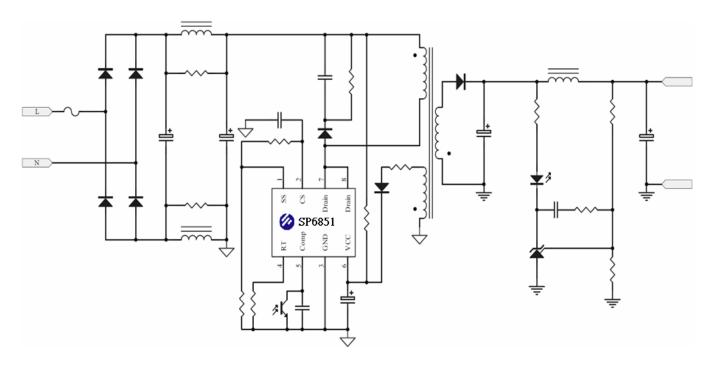
FEATURES

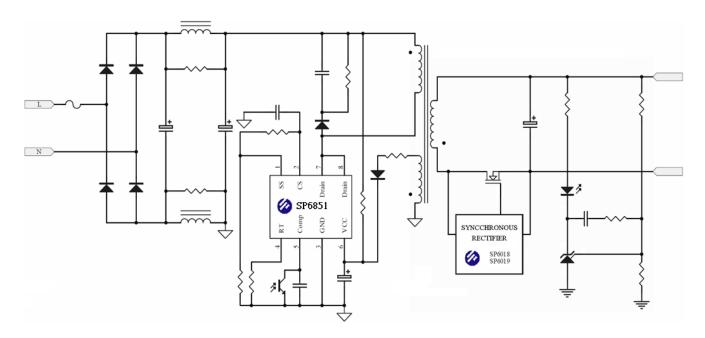
- High-Voltage BiCMOS Process
- Very Low Startup Current (<20µA)
- Under Voltage Lockout (UVLO)
- Current Mode Control
- Non-audible-noise Green Mode Control
- Current Limiting
- OLP (Over Load Protection)
- OVP (Over Voltage Protection) on Vcc Pin
- Leading-Edge Blanking
- Programmable Switching Frequency
- Internal Slope Compensation
- Green-Mode Control for Power Saving
- Building in 650V MOSFET

PIN CONFIGURATION

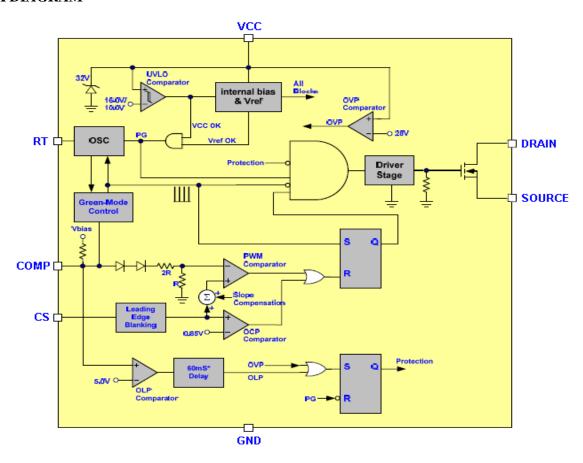
DIP-8P

PART MARKING


DIP-8P


A:Lot Code B:Date Code

TYPICAL APPLCATION CIRCUIT



TYPICAL APPLCATION CIRCUIT for HIGH EFFICIENCY SMPS

PIN DESCRIPTION							
Pin	Symbol	Description					
1	Source	Power MOSFET Source					
2	CS	Current sense. This pin senses the voltage across a resistor, to control PWM output. This pin also provides current amplitude information for current-mode control.					
3	GND	Ground					
4	RT	This current is used to charge an internal capacitor, to determine the switching frequency.					
5	COMP	Voltage feedback. The pin provides the output voltage regulation signal, it provides feedback to the internal PWM comparator, so that the PWM comparator can control the duty cycle.					
6	VCC	Supply Voltage in					
7	Drain	Power MOSFET Drain					
8	Drain	Power MOSFET Drain					

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Package	Part Marking
SP6851D8TGB	DIP-8P	SP6851I

※ SP6851D8TGB: Tube; Pb − Free; Halogen − Free

ABSOULTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified.)

The following ratings designate persistent limits beyond which damage to the device may occur.

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	36	V
V _{COMP/RT/CS} COMP/RT/CS Voltage		-0.3 ~ 7.0	V
Vds	MOSFET Breakdown Voltage	650	V
P_{D}	Power Dissipation @ T _A =85°C (*)	0.3	W
ESD	Human Body Model	4	KV
ESD	Machine Model	300	V
EAS	Single Pulse Avalanche Energy	49	mJ
T_{ope}	Operating Ambient Temperature	-40 ~ 85	°C
T_{J}	Operating Junction Temperature Range	-40 ~ 150	°C
T_{STG}	Storage Temperature Range	-40 ~ 150	°C
$R_{\Theta JC}$	Thermal Resistance Junction – Case (*)	95	°C/W

^(*) The power dissipation and thermal resistance are evaluated under copper board mounted with free air conditions.

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{CC}=15V, unless otherwise specified.)$

Symbol	C=15V, unless otherwise specified.) Parameter	Conditions	Min.	Typ.	Max.	Unit
	age (Vcc Pin)		-	J I		
Istt	Startup Current			10	20	uA
		$V_{COMP} = 0V$		2.7	4	mA
Iop	Operating Current	$V_{COMP} = 3V$		2.4		mA
юр	Operating Current	Protection tripped (OLP, OVP)		1.0		mA
UVLO (off)	Min. Operating Voltage		9.0	10.0	11.0	V
	Start Threshold Voltage		15.0	16.0	17.0	V
OVP Level	Over Voltage Protection		26	27	29.5	V
Voltage Feed	dback (Comp Pin)					
Isc	Short Circuit Current			1.25	2.2	mA
Vop	Open Loop Voltage			6		V
VTH(GM)	Green Mode Threshold VCOMP			2.35		V
Oscillator (RT Pin)					
Fosc	Frequency	R _T =100KΩ	60.0	68.0	70.0	KHz
Fosc(gm)	Green Mode Frequency	Fs=65.0KHz		22		KHz
Fdt	Frequency Variation versus Temp. Deviation	(-40°C ~105°C)			3	%
Fdv	Frequency Variation versus Vcc Deviation	(Vcc=11V-22V)			1	%
Current Sen	nsing (CS Pin)					
Vcs(off)	Maximum Input Voltage		0.8	0.85	0.9	V
TLEDD	Leading Edge Blanking Time			280		nS
Zcs	Input impedance		1			$M\Omega$
TPD	Delay to Output			100		nS
MOSFET						
DC (Max)	Maximum Duty Cycle		70	75	80	%
DC (Min)	Minimum Duty Cycle			0		%
VDSS	Drain-Source Breakdown Voltage	VGS=0V, ID=250uA	650			V
Idss	Drain-Source Leakage Current	VGS=0V, VDS=550V			10	uA
RDS(ON)	On-State Resistance	Vgs=10V, ID=1A			4.95	Ω
VsD	Forward On Voltage	V _G S=0V, I _S =1.4A			1.5	V
Co	Output capacitance	VGS=0V, VDS=25V,		27		pF
	1 1	f=1.0MHz				•
Tr	Rising Time			50	200	nS
Tf	Falling Time			30	120	nS
OLP (Over	Load Protection)				•	•
				5 0		17
TLOLP	OLP Trip Level			5.0		V

Note: The OLP delay time is proportional to the period of switching cycle. So that, the lower RT value will set the higher switching frequency and the shorter OLP delay time.

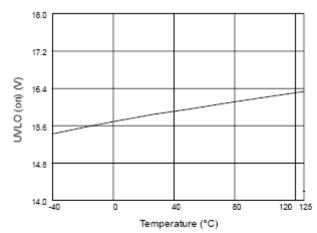


Fig. 1 UVLO (on) vs. Temperature

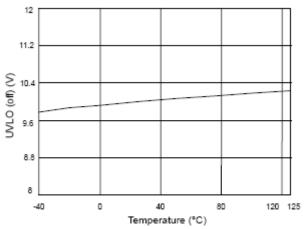


Fig. 2 UVLO (off) vs. Temperature

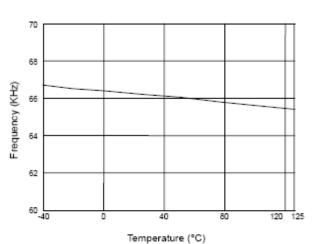


Fig. 3 Frequency vs. Temperature



Fig. 4 Green Mode Frequency vs. Temperature

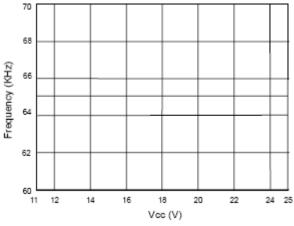


Fig. 5 Frequency vs. Vcc

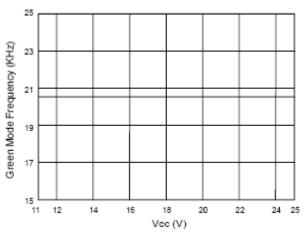


Fig. 6 Green Mode Frequency vs. Vcc

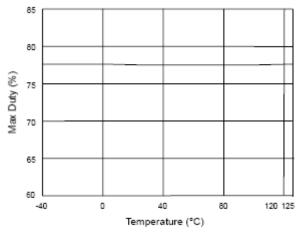


Fig. 7 Max Duty vs. Temperature

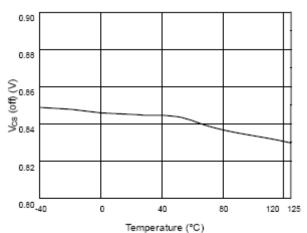


Fig. 8 V_{CS} (off) vs. Temperature

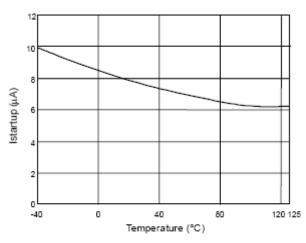


Fig. 9 Startup Current (Istartup) vs. Temperature

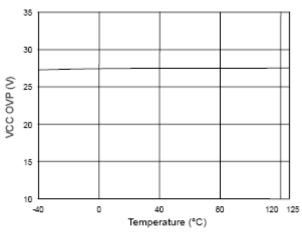


Fig. 10 VCC OVP vs. Temperature

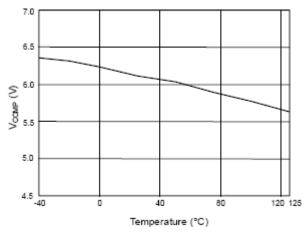
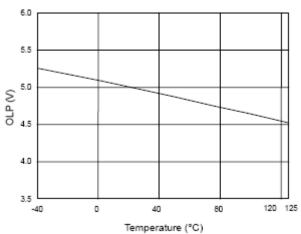
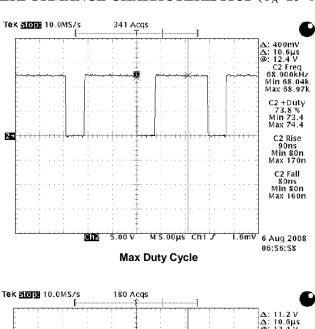
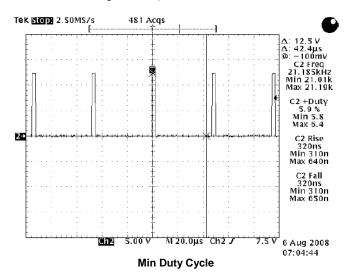
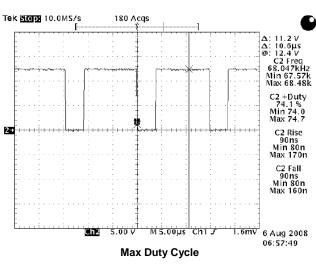
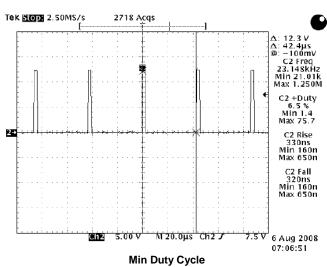
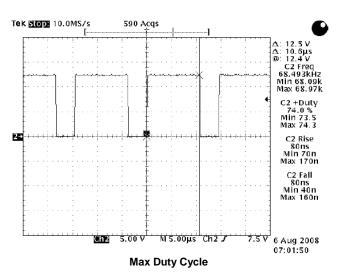
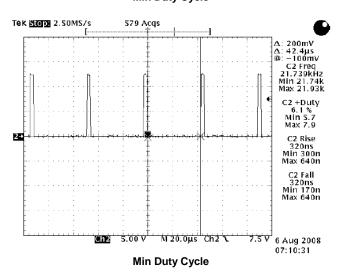


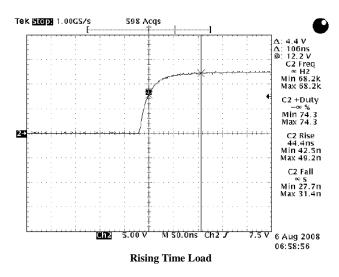
Fig. 11 V_{COMP} open loop voltage vs. Temperature

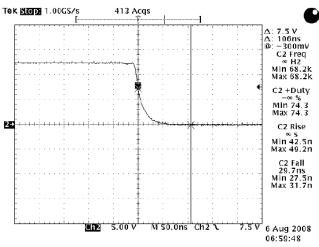





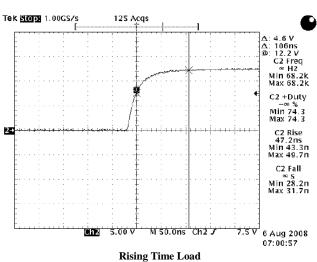

Fig. 12 OLP-Trip Level vs. Temperature



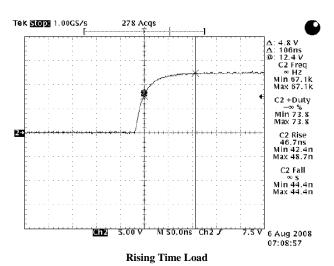


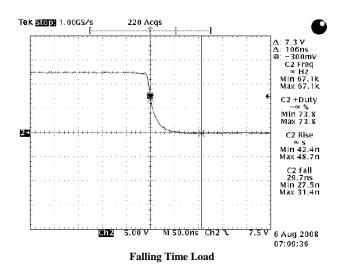


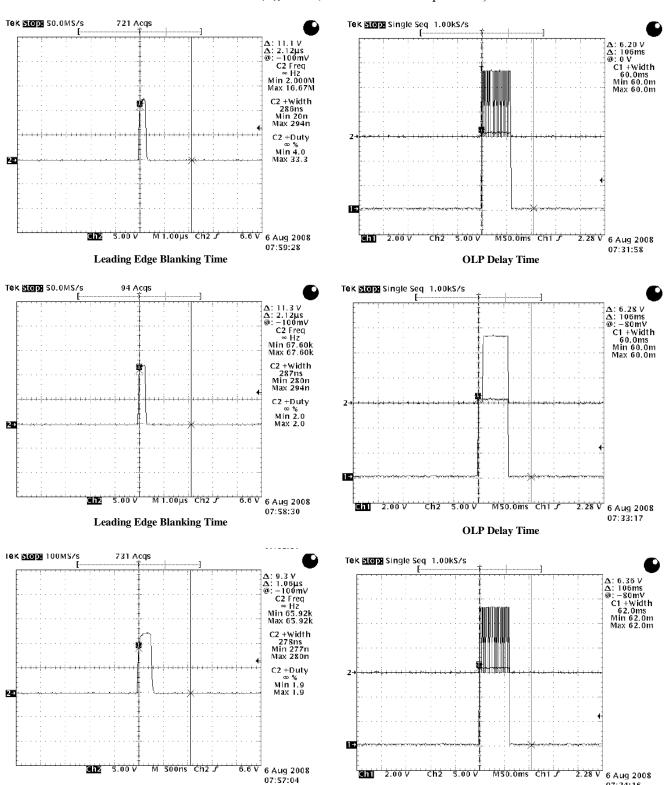












Time Load

2020/07/06 **Ver 3** Page 10

OLP Delay Time

Leading Edge Blanking Time

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties that may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468
http://www.syncpower.com