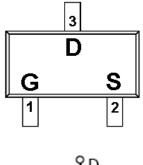
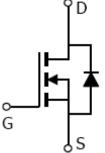
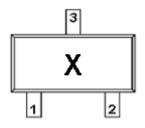
DESCRIPTION

The SPN1012 is the N-Channel enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where high-side switching, low in-line power loss, and resistance to transients are needed.


APPLICATIONS


- Drivers : Relays/Solenoids/Lamps/Hammers
- Power Supply Converter Circuits
- Load/Power Switching Cell Phones, Pagers

FEATURES


- N-Channel
 20V/0.65A,RDs(ON)=380mΩ@VGs=4.5V
 20V/0.55A,RDs(ON)=450mΩ@VGs=2.5V
 20V/0.45A,RDs(ON)=800mΩ@VGs=1.8V
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- ♦ SOT-523 (SC-89) package design

PIN CONFIGURATION (SOT-523 / SC-89)

PART MARKING

PIN DESCRIPTION		
Pin	Symbol	Description
1	G	Gate
2	S	Source
3	D	Drain

ORDERING INFORMATION

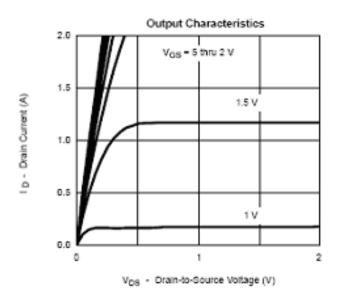
Part Number	Package	Part Marking		
SPN1012S52RGB	SOT-523	Х		

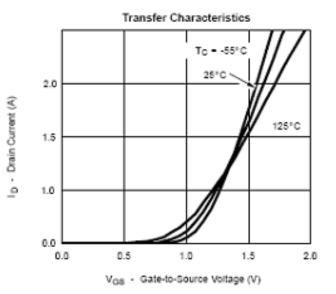
※ SPN1012S52RGB : Tape Reel ; Pb − Free, Halogen − Free

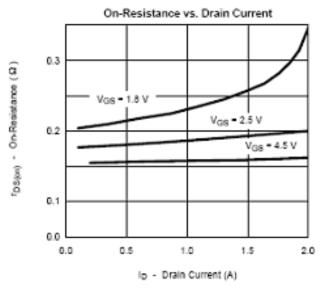
ABSOULTE MAXIMUM RATINGS

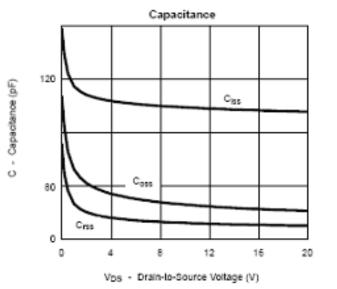
(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		VDSS	20	V	
Gate –Source Voltage		VGSS	±12	V	
	TA=25°C	Ір	0.65	٨	
Continuous Drain Current(TJ=150°C)	Ta=80°C	ID	0.45	A	
Pulsed Drain Current		Idm	1.0	А	
Continuous Source Current(Diode Conduction)		Is	0.3	А	
Power Dissipation	TA=25°C	Da	0.27	W	
	TA=70°C	PD	0.16		
Operating Junction Temperature		TJ	-55/150	°C	
Storage Temperature Range		Tstg	-55/150	°C	

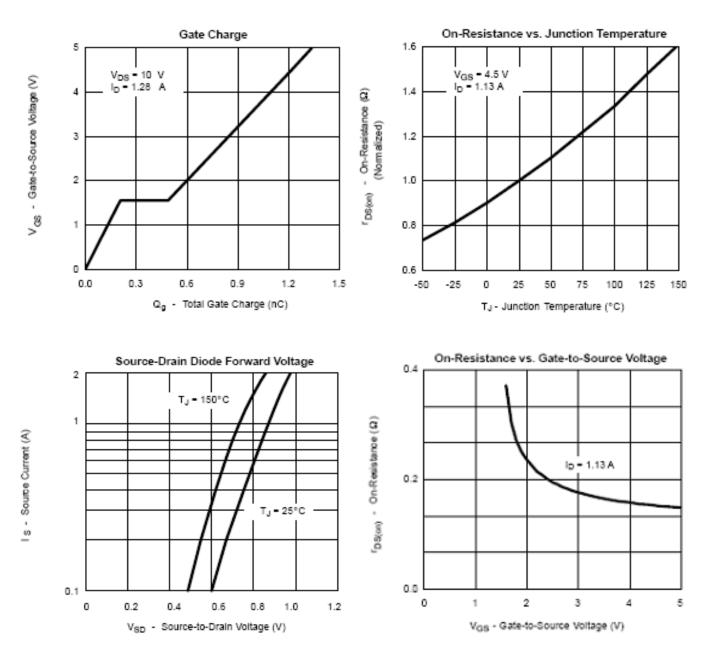


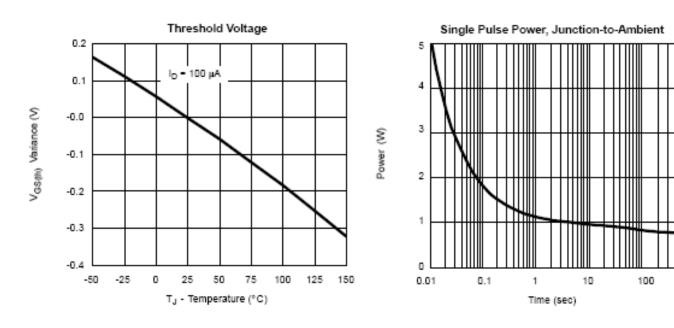

ELECTRICAL CHARACTERISTICS

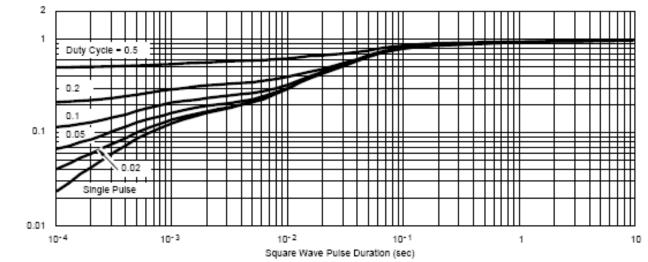

(TA=25°C Unless otherwise noted)


Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V(BR)DSS	VGS=0V,ID= 250uA	20			V
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	0.35		1.0	V
Gate Leakage Current	IGSS	VDS=0V,VGS=±12V			100	nA
Zero Gate Voltage Drain Current		VDS= 20V, VGS=0V			1	
	IDSS	Vds= 20V,Vgs=0V Tj=55°C			5	uA
On-State Drain Current	ID(on)	$V_{DS} \ge 4.5V, V_{GS} = 5V$	0.7			Α
Drain-Source On-Resistance	RDS(on)	VGS=4.5V,ID=0.65A VGS=2.5V,ID=0.55A VGS=1.8V,ID=0.45A		0.26 0.32 0.42	0.38 0.45 0.80	Ω
Forward Transconductance	gfs			1.0		S
Diode Forward Voltage	VSD	Is=0.15A,VGs=0V		0.8	1.2	V
Dynamic			·			
Total Gate Charge	Qg	Vds=10V,Vgs=4.5V,		1.2	1.5	nC
Gate-Source Charge	Qgs	ID=0.6A		0.2		
Gate-Drain Charge	Qgd			0.3		
Turn-On Time	td(on)	Vap. 10V. 100		5	10	nS
	tr	$VDD=10V,RL=10\Omega$, ID=0.5A		8	15	
Turn-Off Time	td(off)	$V_{\text{GEN}}=4.5V, R_{\text{G}}=6\Omega$		10	18	
	tf	1		1.2	2.8	

TYPICAL CHARACTERISTICS






TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Normalized Thermal Transient Impedance, Junction-to-Foot

Normalized Effective Transient Thermal Impedance 600

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 © http://www.syncpower.com