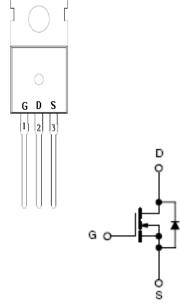


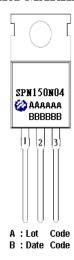
DESCRIPTION

The SPN150N04 is the N-Channel logic enhancement mode power field effect transistor which is produced using super high cell density DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suitable for synchronous rectifier application, Motor control power management and other Power Tool circuits. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.

APPLICATIONS


- DC/DC Converter
- Load Switch
- SMPS Secondary Side Synchronous Rectifier
- Motor Control
- Power Tool

FEATURES


- 40V/150A, RDS(ON)=3.0m Ω @VGS=10V
- 40V/150A, RDS(ON)= $3.9m\Omega$ @VGS=4.5V
- ◆ Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- ◆ TO-220-3L package design

PIN CONFIGURATION

TO-220-3L

PART MARKING

T0-220-3L PIN DESCRIPTION

Pin	Symbol	Description
1	G	Gate
2	D	Drain
3	S	Source

ORDERING INFORMATION

Part Number	Package	Part Marking		
SPN150N04T220TGB	TO-220-3L	SPN150N04		

[※] SPN150N04T220TGB: Tube; Pb − Free; Halogen − Free

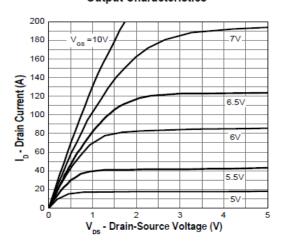
ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

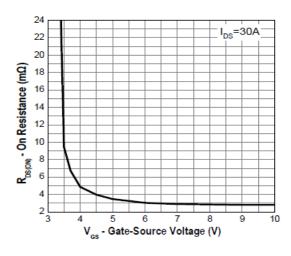
Parameter	Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	40	V
Gate –Source Voltage		VGSS	±20	V
Continuous Drain Current (Silicon Limited)	Tc=25°C	ID	150	
	Tc=70°C		120	A
Pulsed Drain Current	Ірм	480	A	
Power Dissipation	Tc=25°C Tc=70°C	PD	83 53	W
Operating Junction Temperature		Tı	-55/150	$^{\circ}\!\mathbb{C}$
Storage Temperature Range		Tstg	-55/150	$^{\circ}\!\mathbb{C}$
Thermal Resistance-Junction to Case		RөJC	1.5	°C/W

ELECTRICAL CHARACTERISTICS

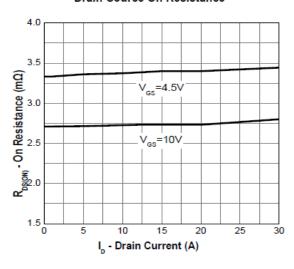
(TA=25°C Unless otherwise noted)

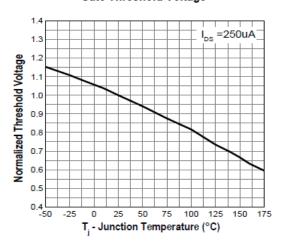

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static	.		•			·
Drain-Source Breakdown Voltage	V(BR)DSS	VGS=0V,ID=250uA	40			V
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1.2	1.9	2.5	V
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA
Zero Gate Voltage Drain Current	Idss	V _{DS} =32V, V _{GS} =0V T _J =25°C			1	uA
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=30A			3.0	- mΩ
		Vgs=4.5V,Id=20A			3.9	
Diode Forward Voltage	Vsd	IF=1A,VGS=0V			1.3	V
Dynamic						
Total Gate Charge (10V)	Qg			79.5		nC
Gate-Source Charge	Qgs	VDS=20V, VGS=20V ID=30A		23.2		
Gate-Drain Charge	Qgd	-ID-30A		4.89		
Input Capacitance	Ciss			4264		pF
Output Capacitance	Coss	VDS=20V, VGS=0V f=1MHz		897		
Reverse Transfer Capacitance	Crss			401		
Turn-On Time	td(on)			22		nS
	tr	V _{DD} =20V, ID=30A		7		
Turn-Off Time	td(off)	VGEN= $10V$, RG= 3Ω		99		
	tf			18		

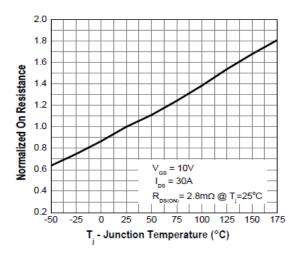
2020/05/11 **Ver 2** Page 3

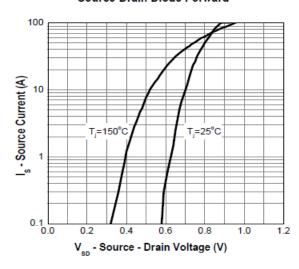


TYPICAL CHARACTERISTICS


Output Characteristics

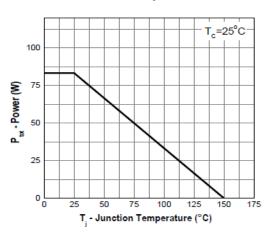

Gate-Source On Resistance


Drain-Source On Resistance

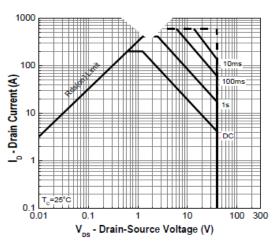

Gate Threshold Voltage

Drain-Source On Resistance

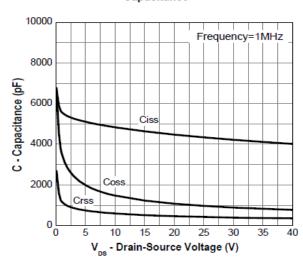
Source-Drain Diode Forward

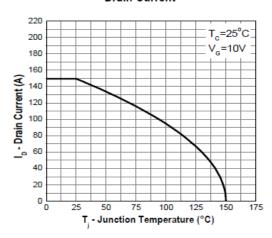


2020/05/11 **Ver 2** Page 4

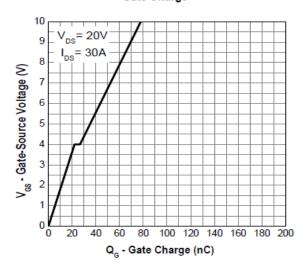


TYPICAL CHARACTERISTICS


Power Dissipation


Safe Operation Area


Capacitance


Drain Current

Transient Thermal Impedance

Gate Charge

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

© http://www.syncpower.com

2020/05/11 **Ver 2** Page 6