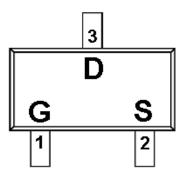


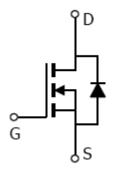
DESCRIPTION

The SPN3422 is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

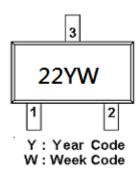
This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.


FEATURES


- 60V/3.0A, RDS(ON)= $125m\Omega$ @VGS=10V
- 60V/2.5A,RDS(ON)= $145m\Omega$ @VGS=4.5V
- ◆ Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current capability
- ◆ SOT-23 package design

APPLICATIONS


- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load SwitchDSC
- LCD Display inverter

PIN CONFIGURATION (SOT-23)

PART MARKING

PIN DESCRIPTION						
Pin	Symbol	Description				
1	G	Gate				
2	S	Source				
3	D	Drain				

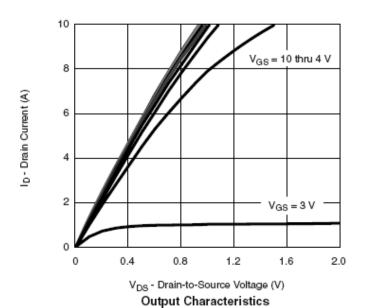
ORDERING INFORMATION

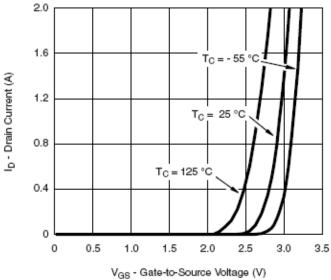
Part Number	Package	Part Marking
SPN3422S23RGB	SOT-23	22

% Week Code : A ~ Z(1 ~ 26); a ~ z(27 ~ 52)

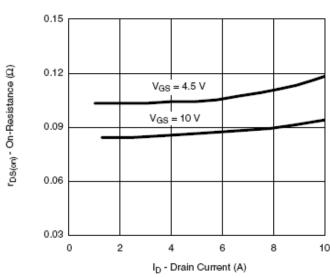
※ SPN3422S23RGB: Tape Reel; Pb − Free; Halogen − Free

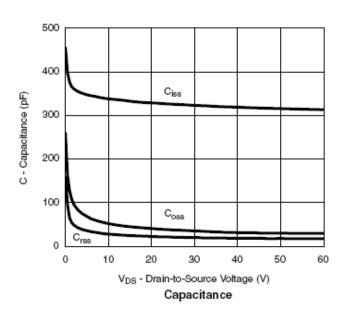
ABSOULTE MAXIMUM RATINGS

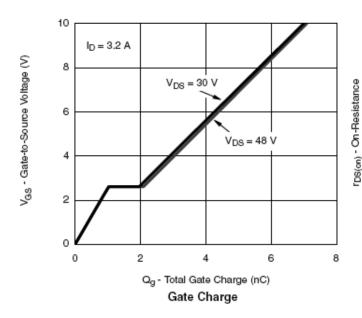

(TA=25°C Unless otherwise noted)

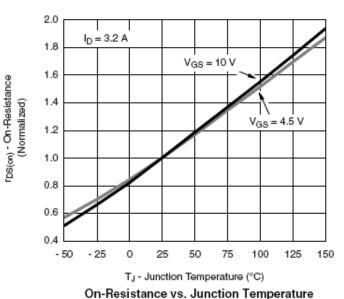

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	60	V	
Gate –Source Voltage		VGSS	±20	V	
Continuous Drain Current/Tr-150°C)	Ta=25°C	In	3.0	Λ	
Continuous Drain Current(TJ=150°C)	Ta=70°C	- Id	2.2	A	
Pulsed Drain Current		Ірм	6	A	
Continuous Source Current(Diode Conduction)		Is	2.0	A	
Barrara Direitardian	Ta=25°C	D-	2.0	W	
Power Dissipation	Ta=70°C	PD	1.3		
Operating Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance-Junction to Ambient		RθJA	140	°C/W	

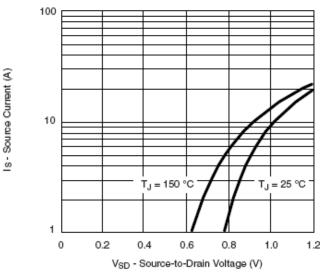
ELECTRICAL CHARACTERISTICS

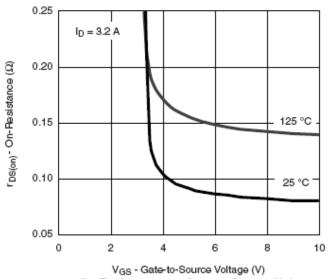

(Ta=25°C Unless otherwise noted)


Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static	<u> </u>					
Drain-Source Breakdown Voltage	V(BR)DSS	VGS=0V,ID=250uA	60			V
Gate Threshold Voltage	VGS(th)	VGS(th) VDS=VGS,ID=250uA			1.5]
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA
Zero Gate Voltage Drain Current		VDS=48V,VGS=0.0V			1	uA
	Idss	VDS=48V,VGS=0.0V TJ=55°C			10	
On-State Drain Current	ID(on)	$V_{DS} \ge 4.5V, V_{GS} = 4.5V$	10			A
Drain-Source On-Resistance	RDS(on)	VGS = 10V,ID=3.0A		0.106	0.125	Ω
	KD3(0II)	$V_{GS} = 4.5V, I_{D} = 2.5A$		0.118	0.145	3.2
Forward Transconductance	gfs	VDS=15V,ID=4.0A		12		S
Diode Forward Voltage	Vsd	Is=2.5A,VGS=0V		0.8	1.2	V
Dynamic						
Total Gate Charge	Qg			4.0	6	nC
Gate-Source Charge	Qgs	VDS=30V, VGS=4.5V ID=4.0A		1.2		
Gate-Drain Charge	Qgd	-1D-4.0A		1.0		
Input Capacitance	Ciss			320		pF
Output Capacitance	Coss	V _{DS} =30V, V _{GS} =0V f=1MHz		42		
Reverse Transfer Capacitance	Crss			20		
Turn-On Time	td(on)			6	10	
	tr	VDD=30V, RL= 12Ω		12	20	
Turn-Off Time	td(off)	ID= $2.5A$,VGEN= $10V$		18	30	nS
	tf			10	15	

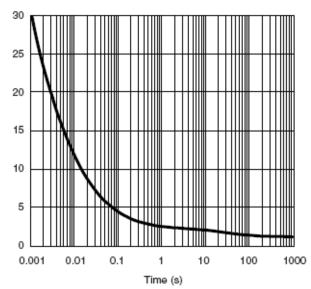



Transfer Characteristics

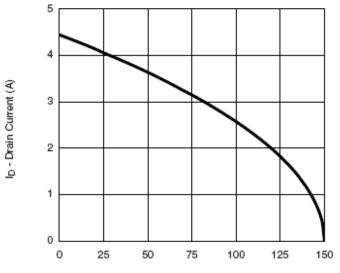


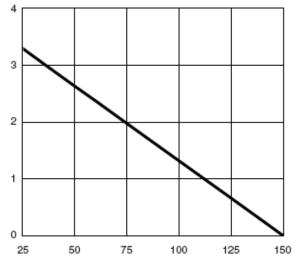


On-Resistance vs. Drain Current and Gate Voltage


V_{SD} - Source-to-Drain Voltage (V)

V_{GS} - Gate-to-Source Voltage (V)

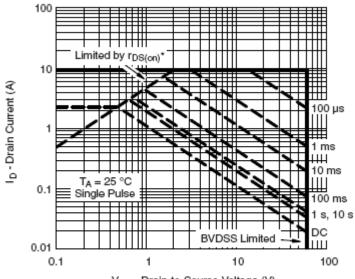

Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

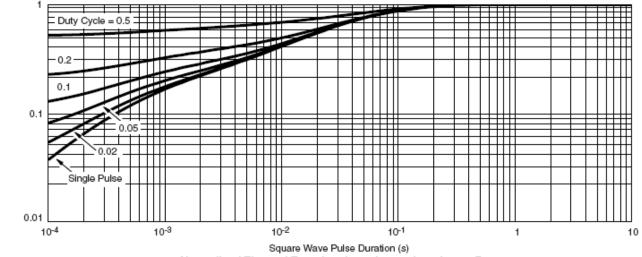
Single Pulse Power (Junction-to-Ambient)

T_C - Foot (Drain) Temperature (°C)

Current Derating*


T_C - Foot (Drain) Temperature (°C)

Power Derating


2020/1/21 **Ver.2** Page 6

Power Dissipation (W)

Nomalized Effective Transient Thermal Impedance

$$\begin{split} &V_{DS}\text{ - Drain-to-Source Voltage (V)}\\ ^*V_{GS}>&\min V_{GS}\text{ at which }r_{DS(on)}\text{ is specified}\\ \textbf{Safe Operating Area, Junction-to-Ambient} \end{split}$$

Normalized Thermal Transient Impedance, Junction-to-Foot

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

© http://www.syncpower.com