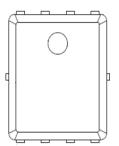
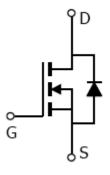


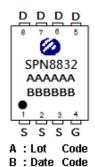
DESCRIPTION

The SPN8832 is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. The SPN8832 has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.


APPLICATIONS


- High Frequency Synchronous Buck Converter
- DC/DC Power System
- Load Switch

FEATURES


- 30V/163A,RDS(ON)=3.0m Ω @VGS=10V
- 30V/163A,RDS(ON)=4.0m Ω @VGS=4.5V
- ◆ Super high density cell design for extremely low RDS(ON)
- ◆ Exceptional on-resistance and maximum DC current capability
- ◆ PPAK5x6-8L package design

PIN CONFIGURATION(PPAK5x6-8L)

PART MARKING

(YY/MM/DD)

Page 1

2020/05/21 **Ver 2**

PIN DESCRIPTION

Pin	Symbol	Description
1	S	Source
2	S	Source
3	S	Source
4	G	Gate
5	D	Drain
6	D	Drain
7	D	Drain
8	D	Drain

ORDERING INFORMATION

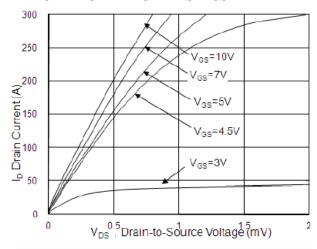
Part Number	Package	Part Marking
SPN8832DN8RGB	PPAK5x6-8L	SPN8832

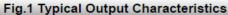
[※] SPN8832DN8RGB : Tape Reel ; Pb − Free ; Halogen - Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage	Vdss	30	V		
Gate –Source Voltage			±20	V	
Continuous Drain Current(Silicon Limited)	Tc=25°C	ID	163	A	
	Tc=100°C		103	A	
Pulsed Drain Current		IDM	325	A	
Avalanche Current		Ias	70.2	A	
Single Pulse Avalanche Energy	E _{AS}	246.4	mJ		
Power Dissipation	Tc=25°C	PD	83	W	
Operating Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance-Junction to Case		RөJC	1.5	°C/W	


ELECTRICAL CHARACTERISTICS


(Ta=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V(BR)DSS	VGS=0V,ID=250uA	30			1 7	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1.2		2.5	V	
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA	
Zero Gate Voltage Drain Current	IDSS	Vds=24V,Vgs=0V			1	uA	
	1033	VDS=24V,VGS=0V, TJ=55°C			5		
Gate Resistance	Rg	VDS=VGS =0V, f=1MHz		0.9		Ω	
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=30A			3	mΩ	
		Vgs=4.5V,ID=15A			4		
Forward Transconductance	gfs	Vds=5V,Id=30A		60		S	
Diode Forward Voltage	Vsd	Is=1A,VGS=0V			1.2	V	
Dynamic							
Total Gate Charge (4.5V)	Qg	Vds=15V,Vgs=10V -Id=15A		56		nC	
Gate-Source Charge	Qgs			18			
Gate-Drain Charge	Qgd	-ID-13A		21			
Input Capacitance	Ciss	VDS=15VGS=0V -f=1MHz		5935		pF	
Output Capacitance	Coss			725			
Reverse Transfer Capacitance	Crss			538			
Turn-On Time	td(on)			22		nS	
	tr	VDD=15V, ID=15A,VGS=10V		43.6			
Turn-Off Time	td(off)	$R_G=3.3\Omega$		100			
	tf	1		33.6			

CHARACTERISTICS

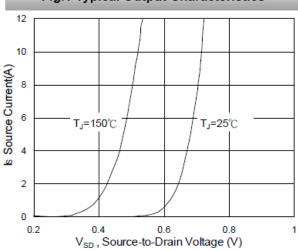


Fig.3 Forward Characteristics of Reverse

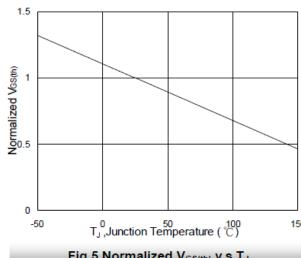


Fig.5 Normalized V_{GS(th)} v.s T_J

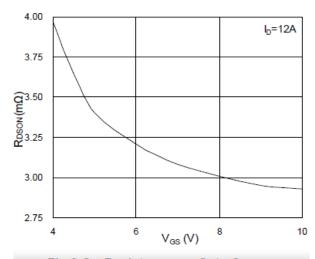
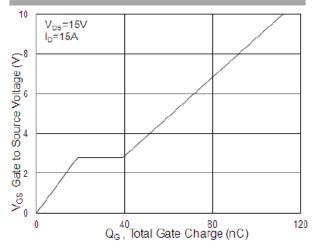
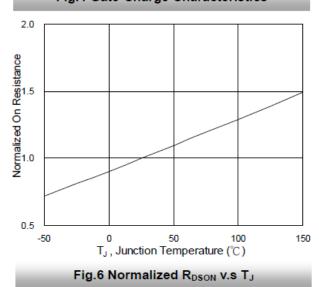
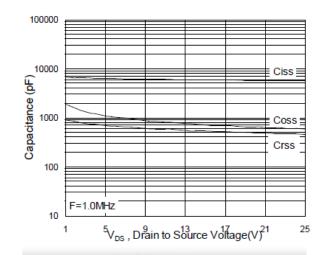


Fig.2 On-Resistance v.s Gate-Source


Fig.4 Gate-Charge Characteristics

N-Channel Enhancement Mode MOSFET

TYPICAL CHARACTERISTICS

1000.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.0

Fig.7 Capacitance

Fig.8 Safe Operating Area

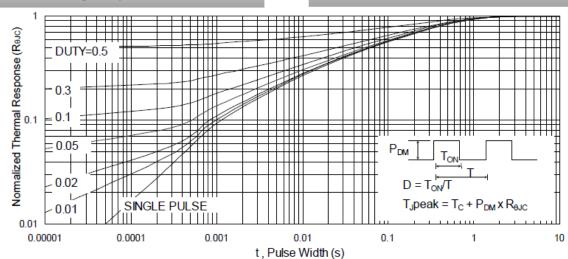
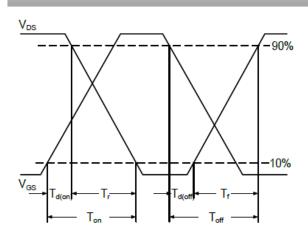



Fig.9 Normalized Maximum Transient Thermal Impedance

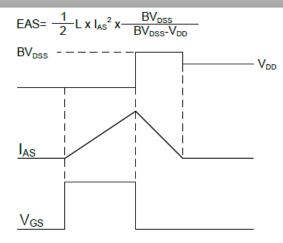


Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

Fax: 886-2-2655-8468 © http://www.syncpower.com