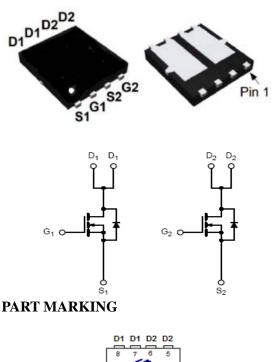
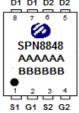


DESCRIPTION

The SPN8848 is the Dual N-Channel Enhancement mode power field effect transistors are produced using high cell density DMOS trench technology. This high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where high-side switching, low in-line power loss, and resistance to transients are needed.


FEATURES


- 40V/10A, RDS(ON) = $8.5m\Omega@VGS=10V$
- 40V/8.0A, RDS(ON)= $12m\Omega@VGS=4.5V$
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- PPAK5x6-8L package design

APPLICATIONS

- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch

PIN CONFIGURATION(PPAK5x6-8L)

PIN DESCRIPTION		
Pin	Symbol	Description
1	S1	Source 1
2	G1	Gate 1
3	S2	Source 2
4	G2	Gate 2
5	D2	Drain 2
6	D2	Drain 2
7	D1	Drain 1
8	D1	Drain 1

ORDERING INFORMATION

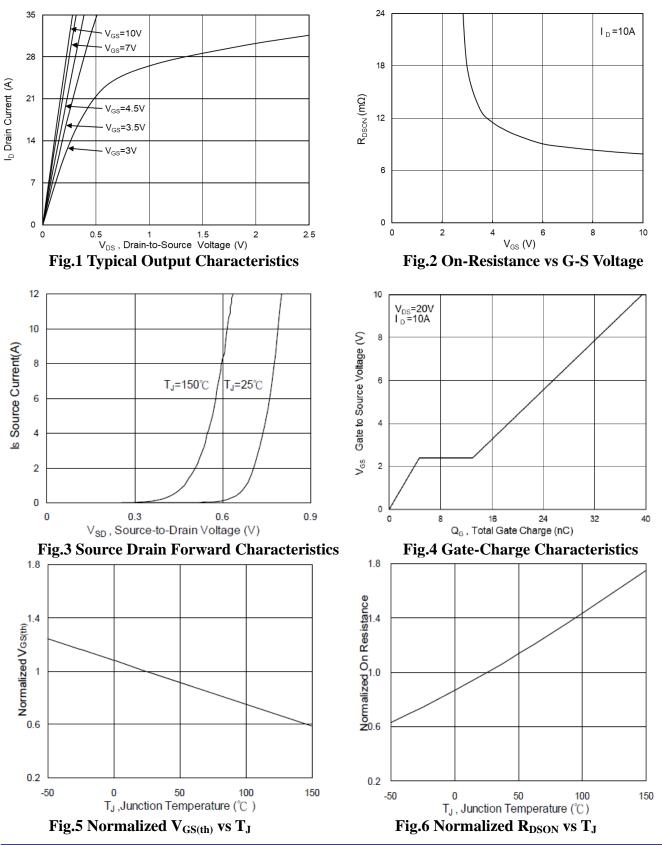
Part Number	Package	Part Marking		
SPN8848DN8RGB	PPAK5x6-8L	SPN8848		

* SPN8848DN8RGB 13" Tape Reel ; Pb – Free ; Halogen – Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDSS	40	V	
Gate –Source Voltage		VGSS	± 20	V	
Continuous Drain Current(T _J =150°C)	T _C =25°C	T	35	٨	
	T _C =100°C	– I _D	22	A	
Pulsed Drain Current ²		Idm	70	А	
Single Pulse Avalanche Energy ³		EAS	51	mJ	
Avalanche Current		I _{AS}	32	Α	
Power Dissipation	pation Tc=25°C		83	W	
Operating Junction Temperature		TJ	-55/150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance Junction to Case ¹		Røjc	1.5	°C/W	



ELECTRICAL CHARACTERISTICS

(TJ=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V(BR)DSS	V(BR)DSS VGS=0V, ID=250uA				v	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1.0	1.6	2.5	v	
Gate Leakage Current	IGSS	VDS=0V,VGS=±12V			±100	nA	
Zero Gate Voltage Drain Current	Inco	V_{DS} =32V, V_{GS} =0V, T_J =25°C			1		
	Idss	V _{DS} =32V, V _{GS} =0V, TJ=55°C			5	uA	
On-State Drain Current	ID(on)	$V_{DS}=5V, V_{GS}=10V$			35	Α	
Drain-Source On-Resistance	RDS(on)	VGS=10V, ID=10A		7.9	8.5	mΩ	
	KDS(0II)	VGS=4.5V, ID=8A		10.8	12		
Forward Transconductance	gfs	VDS=5V,ID=10A		39		S	
Gate Resistance	RG	V _{DS} =0V, V _{GS} =0V,f=1MHz		1.6		Ω	
Diode Forward Voltage ²	Vsd	Is=1A,VGs =0V, T_J =25°C		0.8	1.0	V	
Dynamic							
Total Gate Charge	Qg			18.8		nC	
Gate-Source Charge	Qgs	VDS=20V,VGS=4.5V ID=10A		4.7			
Gate-Drain Charge	Qgd	1D-10A		8.2			
Input Capacitance	Ciss			2332		pF	
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V,f=1MHz		193			
Reverse Transfer Capacitance	Crss			138			
Turn-On Delay Time	td(on)			14.3		nS	
	tr	VDD=15V, VGS=10V,		2.6			
Turn-Off Delay Time	td(off)	$R_G=3.3\Omega, I_D=1A$		77			
	tf]		4.8			

TYPICAL CHARACTERISTICS

2024/01/09 Ver0.1

TYPICAL CHARACTERISTICS

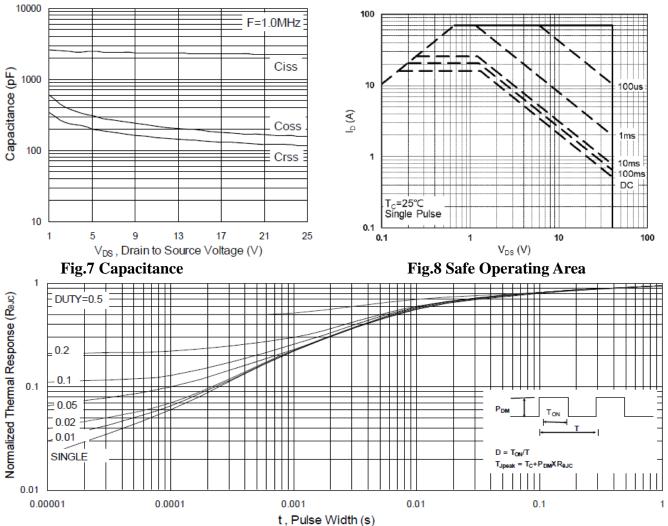


Fig.9 Normalized Maximum Transient Thermal Impedance

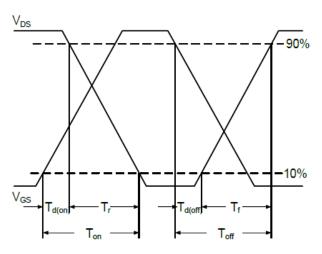
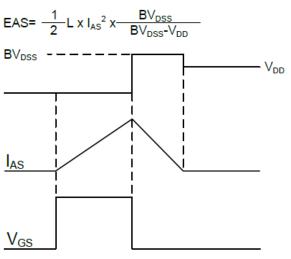



Fig.10 Switching Time Waveform

Fig.11 Unclamping Inductive Waveform

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation ©2024 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 ©http://www.syncpower.com